

GATE CRASH COURSE (ALL BRANCHES)

Engineering Mathematics

Probability

LECTURE NO.31

Vishal Soni Sir

Some different variation

General Venn diagram representation

- → R.E.: 2 coins are tossed simultaneously
- \rightarrow Sample space : S = {TT, TH, HT, HH}

$$P(s) = 1$$

**

$$0 < P(E_i) < 1$$

$$i = 1, 2, 3, 4$$

$$0 \le P(E_1) + P(E_2) + P(E_3) + P(E_4) \le 1$$

$$P(s) = 1$$

$$0 < P(E_i) < 1$$

$$i = 1, 2, 3, 4$$

$$P(E_1) + P(E_2) + P(E_3) + P(E_4) = 1$$

Ex: A dice is rolled

$$\sqrt{S} = \{1, 2, 3, 4, 5, 6\}$$

E₁: Outcomes should have even faces

E2: Outcomes should have prime faces

$$E_1 = \{2, 4, 6\}$$
 $E_2 = \{2, 3, 5\}$

$$E_1 \xrightarrow{4,6} \xrightarrow{2} 3,5$$

 E_1 : Outcome should have "Even" faces = $\{2, 4, 6\}$

 E_2 : Outcome should have "Odd" faces = $\{1, 3, 5\}$

Union of events:

$$A \cup B$$

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 5, 7\}$$

 $A \cup B = \{1, 2, 3, 5, 7\} = Either A or B or both$

Imp Points:

1. When the set A and B are two events associated with sample space S

 $A \cup B$ is an event \rightarrow "Either A or B or both"

→ "At least one of A or B will occur."

Intersection of events:

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 4, 5, 7\}$$

$$A \cap B = \{2, 3\}$$

Imp point: When set A and B are two events associated

with sample space S

 $A \cap B$: Event $\rightarrow A$ and B will occur simultaneous

→ Both A and B will occur

Case 1:

Atleast one of A or B should occur or

Either A or B or both should occur

$$P(AUB) = P(A) + P(B) - P(ANB)$$

Method 1:

$$n(A) = x + y$$

$$n(B) = y + z$$

$$n(A \cap B) = y$$

$$n(A \cup B) = x + y + z$$

$$\frac{\mathbf{n}(\mathbf{A} \cup \mathbf{B})}{\mathbf{n}(\mathbf{s})} = \frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{s})} + \frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{s})} - \frac{\mathbf{n}(\mathbf{A} \cap \mathbf{B})}{\mathbf{n}(\mathbf{s})}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Method 2:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Case 2:

Exactly one of A or B occurs = E

$$P(E) = P(A) + P(B) - 2 P(A \cap B)$$

$$P(E) = P(A \cup B) - P(A \cap B)$$

Case 3:

"Neither A nor B."

$$P(\overline{A} \cap \overline{B}) = P(\text{neither A nor B}) = 1 - P(A \cup B)$$

$$\overline{P(A \cup B)} = 1 - P(A \cup B)$$

Case 4:

Compliment of an event:

$$E_2: \overline{A}$$

$$P(A) + P(\overline{A}) = 1$$

$$P(E_1) + P(E_2) = 1$$

Summary:

For two events A and B of a sample space

(1) P (at least one of A or B occurs) =

or

P(Either A or B or both occurs) =

 $P(E) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(2) Exactly one of A or B occurs

$$P(E) = P(A) + P(B) - 2P(A \cap B) = P(A \cup B) - P(A \cap B)$$

(3) Neither A nor B occurs

$$P(E) = 1 - P(A \cup B)$$

Case 5:

Let A, B, C are 3 events of a sample space

At least one of A or B or C should occur

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

$$-P(B \cap C) + P(A \cap B \cap C)$$

Case 6:

Exactly two of the event A, B, C occurs:

$$P(E) = P(A \cap B) + P(B \cap C) + P(C \cap A) - 3P(A \cap B \cap C)$$

EXACTLY 2 EVENT OUT OF A, B, C

 $P(A \cap B) + P(B \cap C) + P(C \cap A) - 3P(A \cap B \cap C)$

EXACTLY LEVENT OUT OF A,B,C

 $P(A) + P(B) + P(C) - 2P(A \cap B) - 2P(B \cap C) - 2P(C \cap A) + 3P(A \cap B \cap C)$

Case 7.

Exactly one of the events of A, B, C should take place

$$P(E) = P(A) + P(B) + P(C)$$

 $-2P(A \cap B) - 2P(A \cap C)$
 $-2P(B \cap C) + 3P(A \cap B \cap C)$

Summary:

A, B, C are 3 events of a sample space:

(1) At least one of A, B, C should occur:

$$P(E) = P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C)$$

$$-P(C \cap A) + P(A \cap B \cap C)$$

(2) Exactly 2 of A, B, C should occur:

$$P(E) = P(A \cap B) + P(B \cap C) + P(C \cap A) - 3P(A \cap B \cap C)$$

(3) Exactly 1 of A, B, C should occur:

$$P(E) = P(A) + P(B) + P(C) - 2P(A \cap B) - 2P(B \cap C) - 2P(C \cap A) + 3P(A \cap B \cap C)$$

Conditional probability

Let A and B are 2 events associated with same sample space. The conditional probability of an event A given that event B has already occurred.

$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} \text{ where } P(B) \neq 0$$

$$P(A \cap B) = P(A) P(\frac{B}{A}) = P(B) P(\frac{A}{B})$$

(I)
$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(B)} : P(B) \neq 0$$

(II)
$$P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)} : P(A) \neq 0$$

(III)
$$P(A \cap B) = P(B \cap A) = P(A)P(\frac{B}{A}) = P(B)P(\frac{A}{B})$$

Q.

A and B are event such that

$$P(A \cup B) = \frac{3}{4}$$

$$P(A \cap B) = \frac{1}{4}$$

$$P(\overline{A}) = 2/3 \longrightarrow P(A) = \frac{1}{3}$$

$$P(AUB) = P(A) + P(B) - P(ANB)$$

$$\frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4}$$

$$P(B) = \frac{3}{4} - \frac{1}{3} + \frac{1}{4} = \frac{2}{3}$$

=
$$P(B) - P(A \cap B) = \frac{2}{3} - \frac{1}{4} = \frac{5}{12}$$

$$P(B) = 3/4, P(A \cap B \cap \bar{C}) = 1/3$$

$$P(\overline{A} \cap B \cap \overline{C}) = 1/3$$

$$P(B \cap C) = ?$$

$$P(BNC) = P(B) - P(ANBNC) - P(ANBNC)$$

$$= \frac{3}{4} - \frac{1}{3} - \frac{1}{3}$$

$$= \frac{1}{3}$$

For 3 event A, B and C

P (Exactly one of A or B occurs) = P (Exactly one of B or C occurs) = P (Exactly one of A or C occurs) = 1/4

P (all the events occur simultaneously) = $1/16 = P(A \cap B \cap C)$

P (at least one of the events occurs) = ? (AVBUC) = ?

$$P(A)+P(B)-2P(ANB) = \frac{1}{4}$$

$$P(B)+P(C)-2P(BNC) = \frac{1}{4}$$

$$P(C)+P(A)-2P(CNA) = \frac{1}{4}$$

$$P(ANBNC) = \frac{1}{4}$$

$$\left\{ P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) \right\} = \frac{3}{4}$$

Events A, B, C are mutually exclusive events such that

$$\frac{1}{3} \leqslant \chi \leqslant \frac{1}{2}$$

$$0 \le \frac{3x+1}{3} \le 1 - (1)$$
 $0 \le \frac{1-x}{4} \le 1 - (11)$

$$0 \leqslant \frac{1-\chi}{4} \leqslant 1 - (11)$$

$$0 \leqslant \frac{1-3x}{2} \leqslant 1-(111)$$

$$P(A) = \frac{3x+1}{3}$$

$$P(B) = \frac{1-x}{4}$$

$$P(C) = \frac{1-2x}{2}$$

$$0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1 - (iv)$$

The set of positive value of x are in the interval =?

Events A, B, C are mutually exclusive and exhaustive

events such that

$$P(A) = \frac{3x+1}{3}$$

$$P(B) = \frac{1-x}{4}$$

$$=\frac{1}{3}$$
 P(C) $=\frac{1-2x}{2}$

$$0 \leqslant \frac{3x+1}{3} \leqslant 1 - (1)$$

$$0 \le \frac{3x+1}{3} \le 1 - (1)$$
 $0 \le \frac{1-x}{4} \le 1 - (1)$

$$0 \leqslant \frac{1-3x}{3} \leqslant 1 - (iii)$$

$$\frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} = 1$$

The set of positive value of x are in the interval = ?

Types of events:

(1) Equally likely events :-

"Events are equally likely if they have same probability of occurrence."

Ex: Rolling of a dice

 $S = \{1, 2, 3, 4, 5, 6\}$

 E_1 : Outcomes are having off faces $E_1 = \{1, 3, 5\}$

 E_2 : Outcomes are having prime faces E_2 = {2, 3, 5}

$$P(E_1) = \frac{n(E_1)}{n(s)} = \frac{3}{6} = \frac{1}{2}$$

$$P(E_2) = \frac{n(E_2)}{n(s)} = \frac{3}{6} = \frac{1}{2}$$

E₁ and E₂ are equally likely event

(2) Mutually exclusive or Disjoint events

Case 1:

Two event A and B are mutually exclusive if they can not occur

together where A and B are events from same sample space

$$\sqrt{P(A \cap B)} = 0$$

$$P(AUB) = P(A) + P(B)$$

If A and B are mutually exclusive events:

$$(1) \quad P(A \cap B) = 0$$

(2)
$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = 0$$

(3)
$$P\left(\frac{B}{A}\right) = 0$$

(4)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

Ex. Rolling of a dice

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$E_1$$
 = outcome is even faces = $\{2, 4, 6\}$ \rightarrow $P(E_1) = 1/2$

$$E_2$$
 = outcome is odd faces = $\{1, 3, 5\}$ \longrightarrow $P(E_2) = 1/2$

$$\begin{cases} E_1 \cap E_2 = \{\varphi\} \\ \hline P(E_1 \cap E_2) = 0 \\ \longrightarrow E_1 \text{ and } E_2 \text{ are mutually exclusive} \end{cases}$$

$$E_1 \cup E_2 = \{1, 2, 3, 4, 5, 6\} \longrightarrow P(E_1 \cup E_2) = 1$$

 $P(E_1) + P(E_2) = 1$

Case 2:

Events E_1 , E_2 E_n are from same sample space and they are called as mutually exclusive if:

$$E_i \cap E_j = \phi \text{ For } \forall i, j \quad i \neq j$$

$$P(E_i \cap E_j) = 0 \text{ For } \forall i, j \quad i \neq j$$

Addition theorem of probability

Exhaustive of events:

E₁, E₂ E_n are events from same sample space

$$S_1 = \{E_1, E_2 \dots E_n\}$$
 exhaustive set

$$P(E_1 \cup E_2 \cup E_n) = P(S) = 1$$

Note:

"At least one of E₁, E₂ E_n occurs when experiment is

performed"

Eı	Ez
E3	Eq

- {E} = mutually exclusive
- {E} = Not exhaustive

- {E} = mutually exclusive
- {E} = Exhaustive

Rolling of dice

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$E_1 = \{2, 4, 6\}$$

 $E_2 = \{1, 3, 5\}$

$$E_3 = \{2, 3, 5\}$$

$$\mathbf{E}_1 \cup \mathbf{E}_2 \cup \mathbf{E}_3 = \mathbf{S}$$

events

$$P(E_1 \cup E_2 \cup E_3) = P(S) = 1$$

Mutually Exclusive and Exhaustive events

$$E_1, E_2, E_3, \dots, E_n$$

$$E_1 \cup E_2 \cup E_3 \cup \dots, E_n = S$$

$$E_i \cap E_j = \varphi \ \forall \ i \neq j$$

Independent Event :

Case 1:

"Events A and B are said to be independent if occurrence (or non occurrence) of one event does not effect the occurrence (or nonoccurrence) of other event."

$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

$$E_1 = \{2, 4, 6\}$$

$$S_2 = \{H, T\}$$

$$E_2 = \{H\}$$

Independent Events

E1 and E2 are independent event

 $E_1 \rightarrow Pick$ one yellow ball

 $E_2 \rightarrow Pick$ another yellow ball in next draw, replacement is allowed

If A and B are independent event

$$P\left(\frac{A}{B}\right) = P(A)$$

$$P\left(\frac{B}{A}\right) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

$$= P(B)P(A/B)$$

$$P(A \cap B) = P\left(\frac{A}{B}\right)P(B) = P\left(\frac{B}{A}\right)P(A) = P(A)P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Multiplication theorem

(i) A, B are two events

$$P(A \cap B) = P(A)P\left(\frac{B}{A}\right)$$

(ii) A, B, C are 3 events

$$P(A \cap B \cap C) = P(A)P\left(\frac{B}{A}\right)P\left(\frac{C}{A \cap B}\right)$$

16/11

(iii) If A and B are two independent events then (\overline{A}, B) ,

 (A, \overline{B}) $(\overline{A}, \overline{B})$ will also be independent

$$P(A \cap B) = P(A)P(B), \quad P(A \cap \overline{B}) = P(A)P(\overline{B})$$

(iv) If A, B C are 3 events put of which every 2 are independent

$$P(A \cap B) = P(A)P(B), \quad P(B \cap C) = P(B)P(C),$$

$$P(C \cap A) = P(C)P(A), \quad P(A \cap B \cap C) = ?$$

(v) If A, B, C are independent events:

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

Multiplication theorem

E₁, E₂ E_n are independent events

$$P(E_1 \cap E_2 \cap E_3 \dots E_n) = P(E_1) P(E_2) P(E_3) \dots P(E_n)$$

Let A and B be two events such that

$$P(\overline{A \cup B}) = \frac{1}{6}, P(A \cap B) = \frac{1}{4} \text{ and } P(\overline{A}) = \frac{1}{4}$$

Where \overline{A} stands for the complement of the event A. The event A and B are

Independent but not equally likely

Independent and equally likely

Mutually exclusion and independent

Equally likely but and independent

$$\frac{1}{P(AUB)} = \frac{1}{6}$$

$$P(ANB) = \frac{1}{4}$$

$$P(\overline{A}) = \frac{1}{4}$$

EQUALLY LIKELY:

$$P(A) = \frac{3}{4}$$

$$P(AUB) = \frac{5}{6} = P(A) + P(B) - P(ANB)$$

$$P(B) = \frac{1}{3}$$

2. Mutually Exclusive

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

3 Independent

$$P(ANB) = \frac{1}{4}$$

 $P(A)P(B) = \frac{1}{4}$

Q. Let

Let two fair, six faced dice A and B thrown simultaneously. If E_1 is the event that dice A shows up four, E_2 is the event that dice B shows up two and E_3 is the event that the sum of numbers on both dice is odd, then which statement is not true?

- A E₁ and E₃ are independent
- E_1 , E_2 and E_3 are independent
- **E**₁ and E₂ are independent
- D E₂ and E₃ are independent

Q.

Let E and F be two independent events the probability that exactly one of them occurs is 11/25 and probability of none of them occurring is 2/25. If P(T) denotes the probability of occurrence of the event T, then"

- A $P(E) = \frac{4}{5}, P(F) = \frac{3}{5}$
- B $P(E) = \frac{1}{5}, P(F) = \frac{2}{5}$
- (C) $P(E) = \frac{2}{5}, P(F) = \frac{1}{5}$
- **D** $P(E) = \frac{3}{5}, P(F) = \frac{4}{5}$

Two coins R and S are tossed. The 4 joint events H_RH_S ,

 T_RT_S , H_RT_S , T_RH_S have probabilities 0.28, 0.18, 0.30, 0.24 respectively, where H represents head and T represents tail. Which one of the following is TRUE?

- A The coin tosses are independent
- B R is fair, S is not
- C S is fair, R is not
- D The coin tosses are dependent

